
LDAP: a view from the machine room

Felix von Leitner
CCC Berlin

felix-ldap@fefe.de

August 2003

Abstract
LDAP is the protocol behind all major directory services, whether

they come from IBM, Microsoft of Novell. Most presentations about LDAP
are very high level, talking about replication, LDAP schema, about the
wonderful scalability of LDAP, things like that. This talk is a view from
the machine room, it’s about how the protocol works.

LDAP from the machine room

LDAP: a view from the machine room

Agenda

1. What does an LDAP message look like?

2. ASN.1, BER and DER

3. How do ACLs work in LDAP?

4. How does authentication work in LDAP?

5. How does replication work in LDAP?

6. What is LDAP particularly good for?

LDAP from the machine room 1

LDAP: a view from the machine room

First of all

• LDAP is a descendant of DAP

• DAP is the Directory Access Protocol from X.500

• X.500 is an extremely messy and bloated pile of garbage

• DAP uses the OSI protocol stack

• The main (if not only!) difference between DAP and LDAP is that LDAP uses
TCP/IP instead

• The ”L” stands for lightweight, but there’s anything LDAP is not, it’s
lightweight

LDAP from the machine room 2

LDAP: a view from the machine room

What does an LDAP conversation look like?

• Client opens TCP connection to server, port 389, and writes Bind Request

• Server writes Bind Response

• Client writes Search Request

• Server writes n Search Result Entries

• Server writes Search Result Done

• Client writes Unbind Request

• Server drops TCP connection

LDAP from the machine room 3

LDAP: a view from the machine room

What does an LDAP message look like?

Here is a BindRequest:

0^L^B^A^A‘^G^B^A^C^D^@<80>^@

Yep, it’s binary.

It doesn’t look binary in the LDAP RFCs, thought.

That’s because the LDAP RFCs are pretty much worthless.

LDAP from the machine room 4

LDAP: a view from the machine room

Huh?

LDAP is specified in ASN.1, which is a meta language to describe a language.
It turns out that ASN.1 is pretty much worthless as well, because there are
many different ASN.1 encodings, which turn out to look completely different
on the wire.

However, most ASN.1 users use either BER or DER encoding. Those are
actually the same encoding, but BER allows the wire equivalent of writing
”0023” when you mean ”23”.

LDAP from the machine room 5

LDAP: a view from the machine room

ASN.1

BindRequest ::= [APPLICATION 0] SEQUENCE {
version INTEGER (1 .. 127),
name LDAPDN,
authentication AuthenticationChoice }

AuthenticationChoice ::= CHOICE {
simple [0] OCTET STRING,

-- 1 and 2 reserved
sasl [3] SaslCredentials }

SaslCredentials ::= SEQUENCE {
mechanism LDAPString,
credentials OCTET STRING OPTIONAL }

LDAP from the machine room 6

LDAP: a view from the machine room

BER and DER

Here’s how you format a 32-bit integer in BER.

In BER and DER you always write a tag first, then the length, then the
actual value.

The tag looks like this:

+--------+-------+--------+
| class | type | tag |
| 2 bits | 1 bit | 5 bits |
+--------+-------+--------+

LDAP from the machine room 7

LDAP: a view from the machine room

BER and DER

The tag class is an enum. The values are:

0: universal (stuff like integer, boolean, string)

1: application (same, but the tag is application defined)

2: private (similar to application)

3: context specific (not used in LDAP)

LDAP from the machine room 8

LDAP: a view from the machine room

BER and DER – application and private

Application tags are used in LDAP to specify what kind of message it is.

The LDAP spec says that each BindRequest begins with a SEQUENCE. So you
don’t actually have to tell the other side it’s a sequence, as long as you say that
it’s a BindRequest.

The LDAP specs say BindRequest is an Application 0, so you write a
sequence except that the ASN.1 tag does not say ”universal, sequence” but it
says ”application, 0”.

LDAP from the machine room 9

LDAP: a view from the machine room

BER and DER

The tag type is a bit that can be PRIMITIVE (0) or CONSTRUCTED (1).

Integers, strings and booleans are primitive, sequences (think struct)
and sets (think array) are constructed.

The length of the object is counted in bytes. However, the protocol should
not limit the length arbitrarily, so BER encoding has this clever bit twiddling
encoding:

1. if the length is smaller than 128, write the length in one byte

2. otherwise, write the length of the length in bytes plus 128 as one byte, then
all the needed bytes of the length.

LDAP from the machine room 10

LDAP: a view from the machine room

BER and DER

Yes, you read that right: you don’t even know the size of the length in
advance!

You might say: let’s be lazy and not fiddle bits and always write the length
as 4 bytes, there won’t be objects larger than 4 GB in an LDAP directory.

You would be right, but this is only legal in BER, not in DER. LDAP uses DER.

By the way: BER == ”Basic Encoding Rules”.

DER == ”Distinguished Encoding Rules”.

Do you feel distinguished already?

LDAP from the machine room 11

LDAP: a view from the machine room

BER and DER

If you are an experienced programmer you already know the kind of bugs
that other people’s LDAP implementations will have.

What if you encode 5 bytes in your LDAP Bind Request and the protocol
parser only has 32-bit integers and does not check for overflow?

What if the protocol parser uses int instead of unsigned int?

These bugs were already found in various LDAP implementations.

But wait! There’s more!

LDAP from the machine room 12

LDAP: a view from the machine room

BER and DER

I haven’t told you yet how BER and DER encode the actual integer.

You guessed it: variable length. You encode as many bytes as needed by
the integer, big endian.

ASN.1 makes no difference between signed and unsigned integers.

So, if you want to write an unsigned integer (all integers in LDAP itself are
unsigned, by the way), how does the other side know whether the other bytes
in the integer need to be set to 0x00 (positive) or 0xff (negative)?

The answer is: you have to make sure to encode at least one leading zero
bit. So, to encode 32767, you write three bytes in DER: 0x00, 0xff, 0xff.

LDAP from the machine room 13

LDAP: a view from the machine room

BER and DER

To put it all together, this is how we encode the integer 23 in DER:

(tag: universal, primitive, integer) 0x00

(length) 0x01

(23) 0x17

This does not look very wasteful, but a boolean is basically an integer that
is either 0 or 1. To encode a one bit value in DER, you write three bytes (24
bits).

On the other hand, the encoding makes it possible to skip over parts you
don’t understand or implement.

LDAP from the machine room 14

LDAP: a view from the machine room

What’s wrong with this encoding?

Encoding a string is straightforward. You call strlen, with that you
calculate how many bytes you need to represent the length (usually 1), then
you add one for the tag, and you have the size requirement.

But LDAP uses sequences with sequences inside, with integers and strings
inside. So the know how much space you will need to the encoded length of
the outer sequence, you will need to find the length requirements of the inner
sequences, and for that you need to look at all the strings and integers and
calculate the size requirements for them.

Then you know the size requirement of the outer sequence. To write the
inner sequence, you need to iterate over all the inner data again.

LDAP from the machine room 15

LDAP: a view from the machine room

What’s wrong with this encoding?

If you write the inner sequences first, to save calculating the length again
and again, you will need to copy them around into the final buffer again.
This trashes the cache and would not be necessary if LDAP used a less stoned
encoding.

LDAP from the machine room 16

LDAP: a view from the machine room

Opportunities for bugs

I just told you that the encoder is needlessly complex.

What about the decoder?

There are lots of opportunities to generate invalid encoded strings.

For each inner string and integer, the parser much make sure the end
of that object does not cross past the length specified in any of the outer
sequences or sets. You end up carrying around a lot of state.

LDAP from the machine room 17

LDAP: a view from the machine room

Let’s decipher that LDAP BindRequest

0^L^B^A^A‘^G^B^A^C^D^@<80>^@

The 0^L indicates a SEQUENCE of length 12.

The ^B^A^A is the integer 1 (that is the LDAP message ID).

The ‘^G indicates an (APPLICATION 0) SEQUENCE of length 7.

The ^B^A^C is the integer 3 (LDAP version 3).

The ^D^@ is a string of length 0 (no user name, i.e. anonymous bind).

The <0x80>^@ is a string of length 0 with private tag 0. The private tag says
it’s the first choice in a list of possibilities, the simple bind. LDAP also specifies
SASL authentication, with private tag 3.

LDAP from the machine room 18

LDAP: a view from the machine room

What’s this message ID business?

LDAP operates like IMAP (in case you know the IMAP protocol).

Each request gets a message number.

The server then answers them in the order it likes most, and says which
answer is for which message number.

LDAP from the machine room 19

LDAP: a view from the machine room

LDAP Search Requests

LDAP search requests have these parameters:

• base object (string: ”o=fefe,c=de”)

• scope (enum: ”base object”, ”single level”, ”whole subtree”)

• deref (enum, to what extent should server follow aliases)

• size limit, time limit, whether to skip the values (only return keys)

• a filter

LDAP from the machine room 20

LDAP: a view from the machine room

LDAP search request filters

• AND of filters, OR of filters, NOT a filter

• attribute value assertion: =,≥,≤

• substring match (prefix, suffix, any)

• attribute present (”has an email address”)

• approximate match (not actually specified)

LDAP from the machine room 21

LDAP: a view from the machine room

LDAP search requests: scope

LDAP is meant to be hierarchical.

LDAP does not actually specify the hierarchy, but typical examples are

o=fefe,c=de

or

uid=felix-ldap,dc=fefe,dc=de

In the first case, having a base object of ”c=de” will find everyone in
Germany.

LDAP from the machine room 22

LDAP: a view from the machine room

LDAP search requests: schema

The OpenLDAP people keep on talking about LDAP schema definitions and
stuff like that, but the truth is: there is no spoo^Wschema.

A schema would be some external notion on what record formats to expect.
The server can then reject non-conforming directory entries.

But what should the client do if the server answers with a non-conforming
directory entry? That’s why the whole schema idea is basically bogus.

LDAP should be viewed as something like SQL: it’s a way to find records in
a table in a database. Except that there is only one table in the database. And
that hierarchy notion may help you narrow down what you were looking for.

LDAP from the machine room 23

LDAP: a view from the machine room

What LDAP can handle

LDAP can basically handle records with arbitrary combinations of keys and
values.

The LDAP protocol can handle the absence of an attribute, or there can be
more than one occurrance of the same key in a record. That makes it quite
flexible – have two email addresses? Just add one more mail attribute!

If you forget about aliases, referrals, that schema bullshit, SSL and SASL,
LDAP is actually quite lightweight. But don’t tell anyone I said that!

LDAP from the machine room 24

LDAP: a view from the machine room

Other LDAP requests

LDAP also has:

1. ModifyRequests (add, delete and replace attributes in a record)

2. AddRequest (add a record)

3. DelRequest (remove a record)

4. ModifyDNRequest (change DN of a record)

5. CompareRequest (completely worthless, forget that I mentioned them)

LDAP from the machine room 25

LDAP: a view from the machine room

What’s this DN stuff?

LDAP is mostly like an SQL database, except that there is only one table,
and there is only one key which must be unique.

This unique key is called DN, or Distinguished Name.

It looks like this: ”cn=Fefe,ou=Berlin,o=ccc,c=de”. You can put spaces
after the commas if you want. It is a good idea (but not required by the
protocol) that this record also contains attributes ”ou=Berlin” and ”cn=Fefe”.

If you want to modify a record, you specify it by DN. That’s why you need a
special ModifyDNRequest to modify the DN itself.

LDAP from the machine room 26

LDAP: a view from the machine room

ACLs

Did you see me mention any ACLs?

No?

That’s because there are no ACLS in the protocol or specs. If a server wants
to offer ACLs, it has to invent a way to do it itself.

This makes switching LDAP servers a royal pain in the ass.

It has also lead to the worst ACL implementation to ever walk the earth:
OpenLDAPs.

LDAP from the machine room 27

LDAP: a view from the machine room

What is so bad about OpenLDAP’s ACLs?

OpenLDAP ACLs look like this:

access to dn=".*o=fefe,c=de" attr=userPassword
by self write
by anonymous auth
by group="cn=Admins,ou=admins,o=fefe,c=de" write
by * none

Granting write access implies granting read access.

Doesn’t look so bad? Think again!

LDAP from the machine room 28

LDAP: a view from the machine room

What is so bad about OpenLDAP’s ACLs?

ACLs are sorted by DN to which they apply. You can’t say ”everyone can
write his own record”, you have to say that in each ACL.

The DN is matched first. So to check whether you can read my email
address, OpenLDAP will basically check EVERY special case ACL in the ACL list,
even the ACLs that only apply to granting write access, because those imply
read access.

Typical ACL lists contain something like 3 ACLs to specify who can read
what, and something like 50 ACLs to specify who can modify what. The result
is that the performance of writable OpenLDAP servers is really bad.

LDAP from the machine room 29

LDAP: a view from the machine room

What is so bad about OpenLDAP’s ACLs?

The solution is to have two OpenLDAP servers. One with writing enabled,
one read only. The read only one is a slave of the write server and gets auto
updated.

The read server is quick because it only has 3 ACLs to check.

The write server is slow like molasses, but it doesn’t matter because
basically only the admins and users changing stuff will have to suffer. All the
automated read accesses are quick. Well, relatively quick.

It’s OK to run both servers on the same single CPU box, on different ports.

LDAP from the machine room 30

LDAP: a view from the machine room

What else sucks about OpenLDAP?

The default storage backend is Berkeley DB, the worst piece of crapware
under the sun. People regularly lose data and get corrupted directories
because Berkeley DB simply sucks.

”Of course it doesn’t work but look how fast it is!”

OpenLDAP can also use GDBM as back-end, but for that you have to enable
the LDBM backend (at compile time!), disable Berkeley DB, and link against
GDBM. This is slower but at least it works.

LDAP from the machine room 31

LDAP: a view from the machine room

Summary

LDAP itself is surprisingly harmless.

It’s the LDAP specs that suck.

And the ASN.1 encodings.

And the typical implementations. OpenLDAP is bad, but most of the
commercial offerings suck even worse, many are even based on old versions
of OpenLDAP!

LDAP itself can be implemented in 24k (statically linked, a read-only
server), and a trivial LDAP client (in this case, a checkpassword can be done
in about 10k (again, statically linked).

LDAP from the machine room 32

LDAP: a view from the machine room

Join me!

My LDAP project can be found at http://www.fefe.de/tinyldap/.

My LDAP server is quite small, and it can handle a thousand queries per
second on my notebook while forking a new client and a new server process for
each request. And each request opens a new TCP connection.

So obviously LDAP can be done small and efficiently. It’s just that nobody
has done it before me.

Tinyldap still needs write support. I have spent some time thinking about
this, but decided to postpone the implementation until someone pays for it.
Many people are enduring terrible pain with OpenLDAP. I think it’s a question
of time.

LDAP from the machine room 33

LDAP: a view from the machine room

Email me at felix-ldap@fefe.de!

LDAP from the machine room 34

